Drosophila convoluted/dALS is an essential gene required for tracheal tube morphogenesis and apical matrix organization.

نویسندگان

  • Lianna E Swanson
  • Marcus Yu
  • Kevin S Nelson
  • Patrick Laprise
  • Ulrich Tepass
  • Greg J Beitel
چکیده

Insulin-like growth factors (IGFs) control cell and organism growth through evolutionarily conserved signaling pathways. The mammalian acid-labile subunit (ALS) is a secreted protein that complexes with IGFs to modulate their activity. Recent work has shown that a Drosophila homolog of ALS, dALS, can also complex with and modulate the activity of a Drosophila IGF. Here we report the first mutations in the gene encoding dALS. Unexpectedly, we find that these mutations are allelic to a previously described mutation in convoluted (conv), a gene required for epithelial morphogenesis. In conv mutants, the tubes of the Drosophila tracheal system become abnormally elongated without altering tracheal cell number. conv null mutations cause larval lethality, but do not disrupt several processes required for tracheal tube size control, including septate junction formation, deposition of a lumenal/apical extracellular matrix, and lumenal secretion of Vermiform and Serpentine, two putative matrix-modifying proteins. Clearance of lumenal matrix and subcellular localization of clathrin also appear normal in conv mutants. However, we show that Conv/dALS is required for the dynamic organization of the transient lumenal matrix and normal structure of the cuticle that lines the tracheal lumen. These and other data suggest that the Conv/dALS-dependent tube size control mechanism is distinct from other known processes involved in tracheal tube size regulation. Moreover, we present evidence indicating that Conv/dALS has a novel, IGF-signaling independent function in tracheal morphogenesis.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A fat body-derived apical extracellular matrix enzyme is transported to the tracheal lumen and is required for tube morphogenesis in Drosophila

The apical extracellular matrix plays a central role in epithelial tube morphogenesis. In the Drosophila tracheal system, Serpentine (Serp), a secreted chitin deacetylase expressed by the tracheal cells plays a key role in regulating tube length. Here, we show that the fly fat body, which is functionally equivalent to the mammalian liver, also contributes to tracheal morphogenesis. Serp was exp...

متن کامل

New roles for apical secretion and extracellular matrix assembly in Drosophila epithelial morphogenesis

The cover shows an embryonic Drosophila tracheal tube. Epithelial cells (in magenta) of the dorsal trunk surround the lumen (in green).

متن کامل

γCOP Is Required for Apical Protein Secretion and Epithelial Morphogenesis in Drosophila melanogaster

BACKGROUND There is increasing evidence that tissue-specific modifications of basic cellular functions play an important role in development and disease. To identify the functions of COPI coatomer-mediated membrane trafficking in Drosophila development, we were aiming to create loss-of-function mutations in the gammaCOP gene, which encodes a subunit of the COPI coatomer complex. PRINCIPAL FIN...

متن کامل

COPI Vesicle Transport Is a Common Requirement for Tube Expansion in Drosophila

BACKGROUND Tube expansion defects like stenoses and atresias cause devastating human diseases. Luminal expansion during organogenesis begins to be elucidated in several systems but we still lack a mechanistic view of the process in many organs. The Drosophila tracheal respiratory system provides an amenable model to study tube size regulation. In the trachea, COPII anterograde transport of lumi...

متن کامل

Non-Canonical Roles for Yorkie and Drosophila Inhibitor of Apoptosis 1 in Epithelial Tube Size Control

Precise control of epithelial tube size is critical for organ function, yet the molecular mechanisms remain poorly understood. Here, we examine the roles of cell growth and a highly conserved organ growth regulatory pathway in controlling the dimensions of the Drosophila tracheal (airway) system, a well-characterized system for investigating epithelial tube morphogenesis. We find that tracheal ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Genetics

دوره 181 4  شماره 

صفحات  -

تاریخ انتشار 2009